[

A lall] -
.'. o |. EHJ[Fal

IUNATHAN YATES

Chapter 3

Common Python Syntax

Python Identifiers

An identifier in any programming language is the name given to identify a variable,
function, class, module or another object. In Python language, an identifier begins with an
alphabetic letter A to Z or a to z or an underscore (_) followed by zero or more alphabetic

letters, underscores and digits (0 to 9).

Python programming language does not allow special characters such as @, $, /, and %
within identifiers. Python is a case sensitive programming language. Therefore, identifiers
such as ‘Python’ and ‘python’ are two different identifiers in Python programming

language.

Below are the naming conventions for identifiers in Python.

e (lass name in Python always begins with an uppercase letter and all other Python

identifiers starts with a lowercase letter.

e A Python identifier is private when such identifier begins with a single leading

underscore.

e A Python identifier is strongly private when such identifier begins with two leading

underscores.

e A Python identifier is a language-defined special name when such identifier ends

with two trailing underscores.

Python Reserve Words

Reserve words in any programming language are special commands that compiler or
interpreters understands, and these reserve words cannot be used as a constant or variable,

or any other identifier names in that programming language.

Python has the following reserve words, and all such keywords contain lowercase letters

only.

and def | exec if not | return
assert del | finally import| or try
break elif for in pass | while

class else | from is print | with

continue | except | global |lambda| raise | yield

Python Keywords
Lines and Indentations

Any block of code in Python are denoted by line indentation, which is rigidly enforced.
Python has no braces to denote blocks of code for class definitions and function
definitions or flow control. The number of spaces used in an indentation can be variable
but for all statements in a particular block, the number of spaces should always be same.

For example, below, the block is correctly indented and therefore, there is no error.

[F] Demo 2
1 (iE False:
2 print ("211 1s good")
elime
print ("a211 is bad")
&

In the next example, since the last statement in the block is not properly indented,
consequently, the block has an error.

[F Demo 2
1 (iE False:
2 print ("211 1s good")
3 print ("Byfthon the best")
el=ze:
o princ [("All 1s Bad")
B s print ("Incorrsct Indesntations")

Therefore, the conclusion is that in Python programming language, all the continuous lines

indented with the same number of spaces would form a block.

Representing a Statement as Multi-Line

Statements in the Python language ends with a new line. If the statement is required to be
continued into the next line, then the line continuation character (\) is used in Python
language. This line continuation character (\) denotes that the statement line should
continue as shown in the below screenshot. In the below example, we have three variables
resultl, result2 and result3 and the final output is copied to the variable named result.
Instead of writing the equation statement in a single line (result=result1+result2+result3),

here, we have used line continuation character (\) so that, it could be written in three lines

but represents a single statement in Python language.

[F] Demo 52
1 hesultl
result?z

1

o
o -

result3 4]

S cresult = resultl

-

o

8 : cresult?
‘resultc3

 print{"Resplf 1=s: ™)
10 print(result)

| B Consale % |

<terminated> C\Python_Workspace\MyFirstPythonProject\src\Demo.py
Result is:

106

Also, a Python statement which is defined within braces (), {} and [] does not require the
line continuation character (\) when written as a multi-line statement. This kind of Python

statements are still interpreted as a single statement without the use of the line

continuation character (\).

|F] Dema F] MultiLine &3
1 days = {"Monday", "Toesday™,
"Fadnesday", "Thu
Frids - ¢
princ {days)
2 Console I3
<terminated> C\Python_Workspace\MyFirstPythonProject\src\MultiLine. py
{'Thuraday', 'Tuesday', 'Saturday', 'Wednesday', 'Monday*,

'Sunday’',

‘Friday'}

Quotation in Python

33333

The Python language permits the use of single (), double (“) and triple (”’ or ”””) codes to
represent a string literal, making sure that the same type of quote begins and ends that
string. In the below example, single, double and triple codes are used to represent a string
in a word, sentence or paragraph. When we print this variable, they print the string
irrespective of single, double and triple codes used for representing string literal in Python

language.

[F] Demo 7] MultiLine Bl Literals 33

word = ‘Single guoLes

sentence W "Dopbhle Ototes. This 15 a senbencs,

i~ paragraph = """Tripl ’ T
5 print (word)
f print (sentence)

T print(paragraph)

B Console 3

<terminated> C:\Python_Workspace\MyFirstPythonProject\src\Literals. py
Single guotes. Thiz iz a word.

Double Quotes. This is a 3encence.

Triple Cuocesa. This is

a Faragraph

Comments in Python

Any comment in the Python language is represented by a hash sign (#) provided it is not
used inside a string literal between codes (single, double or triple). All characters after the
hash sign (#) and up to the end of the physical line are the part of comment and Python
interpreter ignores this statement while interpreting the whole program. In the below
example, the interpreter will just print the string present inside the print command and will

ignore the parts mentioned after a sign before and after as comments.

|F] Demo IF] MultiLine] Literals [F] Comment &2

& Console 2
<terminated> C:\Python Workspace'\MyFirstPythonProject\src\ Comment. py
Commenta in Python

Using Blank Lines

A blank line in the Python language is either a line with white spaces or a line with
comments (i.e. statement starting with a hash sign (#)). The Python interpreter while
interpreting a blank line, ignores it and no machine readable code will be generated. A

multiline statement in Python is terminated after entering an empty physical line.

Waiting for the User

Using the Python programming language, we can set up the prompt which can accept a
user’s input. The following line of the program will display a prompt, which says “Press

any key to exit”, and waits for the user input or action.

#! /usr/bin/python

raw_input (“\n\nPress any key to

exit.”)

Also, in the above statement, we have used “\n\n”. This is used to create two new lines
before displaying the actual line. Once the key is pressed by the user, the program will
end. By doing this, we can keep a window console open until the user has finished his

work with an application.

Multiple Statements on a Single Line

The Python language allows to write multiple statements on a single line if they are

separated by a semicolon (;) as demonstrated in the example below.

F| Example &2
1 import sys: scrg = 'Hello World'; sys.stdout.Wwrite(atrg + "\n")
& Console E3 X
<terminated> C:\Python_Workspace\MyFirstPythonProjectisrc'Example.py
Hello World

Multiple Statement Groups as Suites and Header Line

In the Python language, a group of individual statements making a single code block are
called suites. Whereas the compound or complex statements, such as if, def, while, and

class require a suite and a header line.

Header line is the one that begins a statement (with the keyword like if, elif, else, etc.) and
ends with a colon (:) and is followed by one or more lines which makes up the suite as
demonstrated in the below example. Here, if strg=="Hello World’: is a header line which

is followed by a suite (suite = ‘Found’).

¥l Example I
AMPOET avVa: ScEg =
if mtrg =1
aulre ='F
alif stEg ="
=uite =
6 e=las =
suice ="'

ays.stdout.write (suice + "in’)

Bl Consale &2 =
<terminated> C\Python_WorkspacehMyFirstPythonProject\srch EBample. py
Found

Command Line Arguments

On UNIX OS, which has Python interpreter installed, we can take help and see all the lists
of the functions. These are the basic ones. The below screenshot demonstrates the help

command on the UNIX system and all the functions or short codes used.

$ python -h

usage: python [option] ... [-c cmd | -m mod | file | -] [arg] ...
Options and arguments (and corresponding environment variables):
-c cmd: program passed in as string (terminates option list)

-d : debug output from parser (also PYTHONDEBUG=X)

-E :ignore environment variables (such as PYTHONPATH)

-h : print this help message and exit

[etc.]

Chapter 4
Types of Variables in Python

Variables in any programming language are the names of the reference to the reserved
memory locations which are used to store values. Similarly, when we are creating a

variable in Python then we are reserving some space in the memory.

These variables have their own data type. Based on the type, the interpreter allocates
memory and decides what kind of data can be stored in these reserved memory locations.
Characters, integers, decimals, etc. are the different data types which can be assigned to

such variables.

Assigning Values to Variables

In the Python language, equal sign (=) is used to assign values to the variables. Such
variables do not need explicit declaration. When we assign a value to a variable, the

declaration or creation happens automatically.

The operand to the left of the equal sign (=) is the name of the variable and the operand to
the right of the equal sign (=) is the value stored in the variable. This is demonstrated in

the below example.

Pl Variables 2

number = 10¢
decimal = 10000.0
3 name = FMartig™
5 print [(number)
print [(decimal)
7 print (name)
El console x

<terminated> C\Python_Workspace\MyFirstPythonProjectisrc\Variables.py
10000.0

Marcin

In the above example, the variable name ‘number’ has an integer value therefore, it
behaves as an integer without any data type declaration. Similarly, the variable name
‘decimal’ has a floating value and variable name ‘name’ has a string value. Python is a

THvery flexible language since it automatically determines the data type once the value is

assigned to the variable.

Multiple Assignment

The Python language allows the assignment of a single value to more than one variables
and multiple values to multiple variables which are separated by commas in a single line

as demonstrated in the below example.

[F] Multi Assignment £

a=b=c=d= 1000
3 E,i.m= "Jogsa FEabrick™, "Peater”

r::'.r;:jl:l
& printib)

B Console &2 &
<terminated= Ci\Python_Workspace'MyFirstPythonProjectisrc Multifssignment.py
Patrick

1000

In the first case (many-t0-one), the single value 1000 is assigned to many variables a, b, ¢
and d.

In the second case (many-to-many), multiple values (“Jose”, “Patrick”, “Peter”) are
assigned to multiple variables k, 1 and m. However, here is one to one mapping between a
variable and a value, e.g. variable k will contain value as “Jose”, variable 1 will contain

value as “Patrick” and variable m will contain value as “Peter”.

Standard Data Types in Python

In Python, the data is stored in memory which can be of many types. For example, a
person’s birth year is stored as a numeric value and his or her qualifications are stored as
alphanumeric characters. Depending on the type of value, the Python has different

standard data types that are used to define the type of value a variable can contain.

Python language has five standard data types. We are going to discuss them in detail.

These are:
Numbers
Strings

Lists

Tuples

Dictionary

Python Numbers

In Python language, the number data type are used to store numeric values. Numeric
variable are created automatically in Python when we assign a numeric value to it as

shown in the below example.

Bl Mumber £
1 wariablel = 198
variable2 = 12.87

1 print({variablel)

5 print (variablez)

B Console &2 X
<terminated= C\Python_ Workspace'\MyFirstPythonProjectisrc\Number.py

is8

BT

LB

Python supports below four different numerical types.
int (signed integers)
long (long integers, they can also be represented in hexadecimal and octal)
float (floating point real values)
complex (complex numbers)

Below are the examples of number objects in Python language.

Int Long float Complex
40 7965391L 0.0 8.14j
900 -0x29546L 17.90 675.j
-589 0455L -31.9 23.8922e-
36j

050 OxABDDAECCBEABCBFEACI | 62.3+e68 .6776j
-0630 563213626792L -560. -.6844+0J
-0x1290 | -032318432823L -82.53e200 | 4e+86J
0x37 -5627995245529L 40.2-E52 7.59e-7]j

Below are few things to note about Python number objects.

denoted by (real + imgj), where real and img are the real numbers and j is the

A complex number consists of an ordered pair of real floating-point numbers

imaginary number unit.

however it is recommended to use only an uppercase L in order to avoid confusion

Python language allows to use a lowercase L. with long data type number,

with the number 1.

In Python, we can delete the reference to a number object (variable) by using the ‘del’

statement. Given below is the syntax of the ‘del’ statement.

del

variablel[,variable2[,variable3]....,variableN]]]]

Using the above statement, we can delete a single variable or multiple variables by using

the ‘del’ statement as shown in the below example.

Python displays long integers (data type number) with an uppercase L.

] Number 3

variablel

variable2

na

wvariable3d

]
L

variable4

5 del wariablel

del variable?,variable3

2 print{variablel)

} print(variables)
B Conscle 2 ® %
<terminated> C\Python_WorkspaceMyFirstPythonProjectsrc Number.py
t‘::::::::—: (most recent call last):

yohon Workapace\MyFirstBythonProject\src\lHumber.py" iine

BREEFTOr: name rariable] s por defined

In the above example, since we have deleted variable2 using the ‘del’ command, this

variable do not exist anymore when we tried to print it.

Strings in Python

In Python language, Strings are identified as a contiguous set of characters which are
represented within the quotation marks. Python language permits the use of single (),
double (“) and triple (”’ or ”””) codes to represent a string literal, making sure that the

same type of quote begins and ends that string.
Strings in Python have below operators.

Slice operator ([] and [:]). By using the slice operator ([] and [:]) with indexes
starting at O in the beginning of the string and working their way from -1 at the

end, subsets of strings can be taken.

Plus (+) sign operator. By using the plus (+) sign operator, we can concatenate

two or more strings.

Asterisk (*) sign operator. Asterisk operator is the repetition operator. If we
want to print string 3 times, then simply we can give command as print (string *
3).

All of above operators are demonstrated in the below example.

P String

strg = 'Hell

rint (2tzg)
print (actrg[3])
print (strg[l:8])
& princ (atrgl3:])
print {atrg * 3)
rint ([(atrg + "Concatenate Dem

2 Console 2 x 5%
<terminated> C:\Python_Workspace\MyFirstPythonProjectisnc\String.py

Hello Pychon!

1

ella Fy

lo Pychon!

Hello Python!Helle Python!Hello Python!

Lists in Python

In Python language, a List is the most versatile compound data types. A list contains items
which are separated by commas and enclosed within square brackets ([]). Lists are similar
to arrays in C or C++ in some extents. The difference between arrays in C /C++ and lists

in Python is that the former cannot have different datatype for elements while latter can
have different datatype for elements.

) Lists E2
liscademn = ("N¥s', 543 , 9.43, 'petsar’, 670.2
smallliscs = (543, ‘patric &
i print (listsdemo)
print (listademof[1]1)
print (lisctademo[l 1)
prinr {(liscsdemo[3:])
print (smalllists #* 2)
3 print [(listsdemo + smalllistca)
El Conzale T = tﬁ
=terminated> C:h\Python_WorkspaceMyFirstPythonProject\srchLists. py
{"xmy=z", 543, 95.48, "peter', &70.2)
£43
(543.)
{"pecer", &670.2)
(543, *parrick", 543, "pacrick")
{"®eyz", 543, 9.43, "perer', &870.2, 543; "parrick")

Lists in Python have below operators.

Slice operator ([] and [:]). By using the slice operator ([] and [:]) with element
position starting at 0 in the beginning of the list and working their way from -1 at
the end, subsets of the list can be taken.

Plus (+) sign operator. By using the plus (+) sign operator, we can concatenate

two or more lists.

Asterisk (*) sign operator. Asterisk operator is the repetition operator. If we

want to print a list 2 times, then simply we can give command as print (listsdemo *

2).

Tuples in Python

In Python language, a tuple is a sequence data type which is almost similar to the list. A

tuple consists of a number of values which are comma separated. Unlike lists, tuples are

enclosed within parentheses.

The main differences between tuples and lists are as follows.

Tuples are enclosed in parentheses (()) whereas Lists are enclosed in brackets ([

D.

Tuples are read-only lists as their elements and size cannot be changed, while

Lists can be updated. We can change lists elements and size.

iP] Tuples 2

tuplesdemo = |
amalltuples = |

srint (tuplesdemo)

print (tuplesdemo[l])

print (tupleademo[Z:4])

print (tuplesademo[l:])

print (tuplesdemo * 2)

print (tuplesdemo + smalltuples)
B Console &

<terminated> C:\Python_Workspace\MyFirstPythonProject\src\ Tuples.py

("xyz', 543, 9.43, 'peter', 670.2)

543

(9.43, 'peter')

{543, 9.43, ‘'peter', 670.2)

["xy=z', 53493; 9.43, '"peter'; 6T0.2, "xyz'; 543, 59.493, "peter'; o70.2)
(*xyz', 543, 9.43, "peter', &7T0.2, 543, 'patrick'}

Tuples in Python have below operators.

Slice operator ([] and [:]). By using the slice operator ([] and [:]) with element
position starting at 0 in the beginning of the tuple and working their way from -1 at

the end, subsets of the tuple can be taken.

Plus (+) sign operator. By using the plus (+) sign operator, we can concatenate

two or more tuples.

Asterisk (*) sign operator. Asterisk operator is the repetition operator. If we
want to print a tuple 2 times, then simply we can give command as print
(tuplesdemo * 2).

Dictionary in Python

A dictionary in Python represents hash table. A hash table (or hash map) is a data structure
which is used to implement an associative array, a structure that can map keys to values.
To compute an index of an array of buckets or slots, a hash table uses a hash function to
procure the desired value. This concept in Python work like associative arrays or hashes
found in Perl and consist of key-value pairs. Keys in Python dictionary can be of any data
type, however mostly they are either numbers or strings. On the other hand, values in

Python dictionary are Python objects.

In Python, syntax wise there are two ways dictionaries can be created which are

mentioned below:

1. Dictionary name is given with curly braces ({ }) first (E.g. veggie = {}). Next we
can define the key value pairs one by one as (E.g. veggie [“tomatoes”] = 20). Here,

key is tomatoes and the value is 20.

2. Dictionary can also be defined with all key value pairs in one go within the curly
braces ({}). (E.g. fruits = {‘apple’: ‘Good’,‘banana’:‘Better’, ‘orange’: ‘Best’}).
Here, dictionary name is ‘fruits’, ‘apple’ is one of the key of such dictionary and

‘Good’ is the associated value with this key.

These syntaxes are demonstrated in the below example.

¥ dictionary

veggie = {}

veggie ["potata™]

veggie| 5"}

princ (veggie.ger |
princ (fruics)

veggie["tomatoes"

& fruits = | 'asppl=';

princ (veggie["tomat

11 print (veggie.get ("carrot”

"carrot™, T"ha Epna found™))

El Consale &3

<terminated> C\Python_Workspace\MyFirstPythonProject\src dictionary.py

20

NHone

no tuna found

{'apple': '"Good'", '"banana': 'Better', 'orange': "Best'}

Data Type Conversion

While writing programming code, we may need to perform data type conversions. To
support such operations, Python language has several built-in functions which are used to
perform conversion from one data type to another. After conversion, these functions

return a new object representing the converted value. Below is the list of Python built-in

functions along with their operational description.

Function

Description

int(value [,Base])

This function converts value into an
integer. “Base” specifies the base if

value is a string.

long(value [,Base])

This function converts value into a long
integer. “Base” specifies the base if

value is a string.

chr(value)

This function converts an integer into a

character.

This function is used to create a

complex(real [,imag])

complex number.

This function is used to create a

dict(Value) dictionary. “Value” must be a sequence
of (key, value) tuples.
This function is used to evaluate a string
eval(strg) _)
which returns an object.
This function converts value into a
float(value)) _
floating-point number.
This function converts value into a
frozenset(value)
frozen set.
This function converts an integer value
hex(value) _ _ _
into a hexadecimal string.
list(value) This function converts value to a list.
This function is used to convert an
repr(value) _) _
object value to an expression string.
This function is used to converts an
oct(value) . _
integer value to an octal string.
This function is used to converts a single
ord(value) o
character to its integer value.
This function is used to convert value
set(value) _
into a set.
This function is used to convert an
str(value) _ _)]
object value into a string representation.
This function is used to convert value
tuple(value)

into a tuple.

This function is used to convert an

unichr(value) integer value into a Unicode character.

